480 research outputs found

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop

    The IACOB project: I. Rotational velocities in Northern Galactic O and early B-type stars revisited. The impact of other sources of line-broadening

    Full text link
    Stellar rotation is an important parameter in the evolution of massive stars. Accurate and reliable measurements of projected rotational velocities in large samples of OB stars are crucial to confront the predictions of stellar evolutionary models with observational constraints. We reassess previous determinations of projected rotational velocities (vsini) in Galactic OB stars using a large, high quality spectroscopic dataset, and a strategy which account for other sources of broadening appart from rotation affecting the diagnostic lines We present a versatile and user friendly IDL tool, based on a combined Fourier Transform (FT) + goodness of fit (GOF) methodology, for the line-broadening characterization in OB-type stars. We use this tool to (a) investigate the impact of macroturbulent and microturbulent broadenings on vsini measurements, and (b) determine vsini in a sample of 200 Galactic OB-type stars, also characterizing the amount of macroturbulent broadening (\vmacro) affecting the line profiles. We present observational evidence illustrating the strengths and limitations of the proposed FT+GOF methodology for the case of OB stars. We confirm previous statements (based on indirect arguments or smaller samples) that the macroturbulent broadening is ubiquitous in the massive star domain. We compare the newly derived vsini with previous determinations not accounting for this extra line-broadening contribution, and show that those cases with vsini< 120 km/s need to be systematically revised downwards by ~25 (+/-20) km/s. We suggest that microturbulence may impose an upper limit below which vsini and \vmacro\ could be incorrectly derived by means of the proposed methodology as presently used, and discuss the implications of this statement on the study of relatively narrow line massive stars.Comment: Accepted for publication in A&A (19 pages, 15 figures, 6 tables). Tables A1-A5 will be make available in the final edited version of the paper (or under request to SS-D

    The Cocoon Nebula and its ionizing star: do stellar and nebular abundances agree?

    Full text link
    (Abridged) Main sequence massive stars embedded in an HII region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula, a close-by Galactic HII region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to perform a detailed comparison of nebular and stellar abundances in the same Galactic HII region. We investigate the chemical content of O, N and S in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum and a detailed spectroscopic analysis of its ionizing B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines (CELs) and optical recombination lines in photoionized nebulae. We collect spatially resolved spectroscopy of the Cocoon nebula and a high resolution optical spectrum of its ionizing star. Standard nebular techniques are used to compute the physical conditions and gaseous abundances of O, N and S. We perform a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. The Cocoon nebula and its ionizing star, located at a distance of 800+-80 pc, have a very similar chemical composition as the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighbourhood as derived from the study of the local cold-gas ISM. The comparison of stellar and nebular CELs abundances in the Cocoon nebula indicates that O and N gas+dust nebular values are in better agreement with stellar ones assuming small temperature fluctuations, of the order of those found in the Orion nebula.Comment: Accepted for publication in A&A. 13 pages, 7 tables and 6 figure

    OB stars at the lowest Local Group metallicity: GTC-OSIRIS observations of Sextans A

    Full text link
    Our aim is to find and classify OB stars in Sextans A, to later determine accurate stellar parameters of these blue massive stars in this low metallicity region (Z0.1Z)(Z \sim 0.1 \rm Z_{\odot}). Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low resolution (R \sim 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars we derive preliminary stellar parameters. The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND, and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. The target selection method worked well for Sextans A, confirming the procedure developed in Garcia \& Herrero (2013). The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance or a relatively strong wind. We observe a correlation between HI and OB associations similar to the irregular galaxy IC1613, confirming the previous result that the most recent star formation of Sextans A is currently on-going near the rim of the H\,{\sc I} cavity

    Fundamental parameters of massive stars in multiple systems: The cases of HD17505A and HD206267A

    Full text link
    Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD17505A and HD206267A. Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. The inner binaries of these systems have eccentric orbits with e ~ 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD17505Aa and HD206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD17505Aa are both well inside their Roche lobe, whilst the primary of HD206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. The CNO abundances and properties of HD17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore.Comment: Accepted for publication in A&

    The chemical composition of the Orion star forming region: stars, gas and dust

    Full text link
    We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.Comment: 5 pages, 4 figures, 2 tables. Poster contribution to the proceedings of the LIAC2010 conference "The multi-wavelength view of hot, massive stars

    The ionizing radiation from massive stars and its impact on H ii regions: results from modern model atmospheres

    Get PDF
    We present a detailed comparison of the ionizing spectral energy distributions (SEDs) predicted by four modern stellar atmosphere codes, tlusty, cmfgen, wm-basic and fastwind. We consider three sets of stellar parameters representing a late O-type dwarf (O9.5 V), a mid-O-type (O7 V) dwarf and an early O-type dwarf (O5.5 V). We explore two different possibilities for such a comparison, following what we called evolutionary and observational approaches: in the evolutionary approach, one compares the SEDs of stars defined by the same values of Teff and log g; in the observational approach, the models to be compared do not necessarily have the same Teff and log g, but produce similar H and He i-ii optical lines. We find that there is a better agreement, in terms of Q(H0), the ratio Q(He0)/Q(H0) and the shape of the SEDs predicted by the four codes in the spectral range between 13 and 30 eV, when models are compared following the observational approach. However, even in this case, large differences are found at higher energies. We then discuss how the differences in the SEDs may affect the overall properties of surrounding nebulae in terms of temperature and ionization structure. We find that the effect over the nebular temperature is not larger than 300-350 K. Contrarily, the different SEDs produce significantly different nebular ionization structures. This will lead to important consequences on the establishment of the ionization correction factors that are used in the abundance determination of H ii regions, as well as in the characterization of the ionizing stellar population from nebular line ratio

    The little-studied cluster Berkeley 90. II. The foreground ISM

    Full text link
    Context: Nearly one century after their discovery, the carrier(s) of Diffuse Interstellar Bands is/are still unknown and there are few sightlines studied in detail for a large number of DIBs. Aims: We want to study the ISM sightlines towards LS III +46 11 and LS III +46 12, two early-O-type stellar systems, and LS III +46 11 B, a mid-B-type star. The three targets are located in the stellar cluster Berkeley 90 and have a high extinction. Methods: We use the multi-epoch high-S/N optical spectra presented in paper I (Ma\'iz Apell\'aniz et al. 2015), the extinction results derived there, and additional spectra. Results: We have measured equivalent widths, velocities, and FWHMs for a large number of absorption lines in the rich ISM spectrum in front of Berkeley 90. The absorbing ISM has at least two clouds at different velocities, one with a lower column density (thinner) in the K I lines located away from Berkeley 90 and another one with a higher column density (thicker) associated with the cluster. The first cloud has similar properties for both O-star sightlines but the second one is thicker for LS III +46 11. The comparison between species indicate that the cloud with a higher column density has a denser core, allowing us to classify the DIBs in a sigma-zeta scale, some of them for the first time. The LS III +46 12 sightline also has a high-velocity redshifted component.Comment: Accepted for publication in A&
    corecore